LOADING

Python黑魔法手册 2.0 文档第四章:魔法进阶扫盲【1】

Python2年前 (2022)发布 safedragon
84 0

Python黑魔法手册 2.0 文档第四章:魔法进阶扫盲【1】

这一章节主要深入理解 Python 中那些难点,将这些难点逐个击破?
比如:
如何写出一个可以带参数的装饰器呢?
装饰器可以装饰函数,那么你知道如何装饰类吗?
描述符的访问规则是什么?
描述符在实际开发中有哪些使用场景?
这些恐怕有不少人都还没有深入学习过,这一章节可扩展的内容有很多,比如元类等,日后会慢慢完善。

4.1 精通装饰器八大用法

装饰器的使用方法很固定

  • 先定义一个装饰器(帽子)
  • 再定义你的业务函数或者类(人)
  • 最后把这装饰器(帽子)扣在这个函数(人)头上

就像下面这样子

def decorator(func):
 def wrapper(*args, **kw):
 return func()
 return wrapper
@decorator
def function():
 print("hello, decorator")

实际上,装饰器并不是编码必须性,意思就是说,你不使用装饰器完全可以,它的出现,应该是使我们的代码

  • 更加优雅,代码结构更加清晰
  • 将实现特定的功能代码封装成装饰器,提高代码复用率,增强代码可读性

接下来,我将以实例讲解,如何编写出各种简单及复杂的装饰器。

入门:日志打印器
首先是日志打印器。 实现的功能:

  • 在函数执行前,先打印一行日志告知一下主人,我要执行函数了。
  • 在函数执行完,也不能拍拍屁股就走人了,咱可是有礼貌的代码,再打印一行日志告知下主人,我执行完啦。
# 这是装饰器函数,参数 func 是被装饰的函数
def logger(func):
 def wrapper(*args, **kw):
 print('主人,我准备开始执行:{} 函数了:'.format(func.__name__))
 # 真正执行的是这行。
 func(*args, **kw)
 print('主人,我执行完啦。')
 return wrapper

假如,我的业务函数是,计算两个数之和。写好后,直接给它带上帽子。

@logger
def add(x, y):
print('{} + {} = {}'.format(x, y, x+y))

然后执行一下 add 函数。

add(200, 50)

来看看输出了什么?

主人,我准备开始执行:add 函数了:
200 + 50 = 250
主人,我执行完啦。

入门:时间计时器
再来看看 时间计时器 实现功能:顾名思义,就是计算一个函数的执行时长。

# 这是装饰函数
def timer(func):
 def wrapper(*args, **kw):
 t1=time.time()
 # 这是函数真正执行的地方
 func(*args, **kw)
 t2=time.time()
 # 计算下时长
 cost_time = t2-t1
 print("花费时间:{}秒".format(cost_time))
 return wrapper

假如,我们的函数是要睡眠10秒。这样也能更好的看出这个计算时长到底靠不靠谱。

import time
@timer
def want_sleep(sleep_time):
 time.sleep(sleep_time)
want_sleep(10)

来看看输出,如预期一样,输出10秒。

花费时间:10.0073800086975098秒

进阶:带参数的函数装饰器
通过上面两个简单的入门示例,你应该能体会到装饰器的工作原理了。
不过,装饰器的用法还远不止如此,深究下去,还大有文章。今天就一起来把这个知识点学透。
回过头去看看上面的例子,装饰器是不能接收参数的。其用法,只能适用于一些简单的场景。不传参的装饰器,只能对被装饰函数,执行固定逻辑。
装饰器本身是一个函数,做为一个函数,如果不能传参,那这个函数的功能就会很受限,只能执行固定的逻辑。这意味着,如果装饰器的逻辑代码的执行需要根据不同场景进行调整,
若不能传参的话,我们就要写两个装饰器,这显然是不合理的。
比如我们要实现一个可以定时发送邮件的任务(一分钟发送一封),定时进行时间同步的任务(一天同步一次),就可以自己实现一个 periodic_task (定时任务)的装饰器,这个装饰
器可以接收一个时间间隔的参数,间隔多长时间执行一次任务。
可以这样像下面这样写,由于这个功能代码比较复杂,不利于学习,这里就不贴了。

@periodic_task(spacing=60)
def send_mail():
 pass
@periodic_task(spacing=86400)
def ntp()
 pass

那我们来自己创造一个伪场景,可以在装饰器里传入一个参数,指明国籍,并在函数执行前,用自己国家的母语打一个招呼。

# 小明,中国人
@say_hello("china")
def xiaoming():
 pass
# jack,美国人
@say_hello("america")
def jack():
 pass

那我们如果实现这个装饰器,让其可以实现 传参 呢?
会比较复杂,需要两层嵌套。

def say_hello(contry):
 def wrapper(func):
 def deco(*args, **kwargs):
 if contry == "china":
 print("你好!")
 elif contry == "america":
 print('hello.')
 else:
 return
 # 真正执行函数的地方
 func(*args, **kwargs)
 return deco
 return wrapper

来执行一下

xiaoming()
print("------------")
jack()

看看输出结果。

你好!
------------
hello.

高阶:不带参数的类装饰器
以上都是基于函数实现的装饰器,在阅读别人代码时,还可以时常发现还有基于类实现的装饰器。
基于类装饰器的实现,必须实现 __call____init__ 两个内置函数。 __init__ :接收被装饰函数 __call__ :实现装饰逻辑。
还是以日志打印这个简单的例子为例

class logger(object):
 def __init__(self, func):
 self.func = func
 def __call__(self, *args, **kwargs):
 print("[INFO]: the function {func}() is running..."\
 .format(func=self.func.__name__))
 return self.func(*args, **kwargs)
@logger
def say(something):
 print("say {}!".format(something))
say("hello")

执行一下,看看输出

[INFO]: the function say() is running...
say hello!

高阶:带参数的类装饰器
上面不带参数的例子,你发现没有,只能打印 INFO 级别的日志,正常情况下,我们还需要打印 DEBUG WARNING 等级别的日志。 这就需要给类装饰器传入参数,给这个函数指定级别了。
带参数和不带参数的类装饰器有很大的不同。
__init__ :不再接收被装饰函数,而是接收传入参数。 __call__ :接收被装饰函数,实现装饰逻辑。

class logger(object):
 def __init__(self, level='INFO'):
 self.level = level
 def __call__(self, func): # 接受函数
 def wrapper(*args, **kwargs):
 print("[{level}]: the function {func}() is running..."\
 .format(level=self.level, func=func.__name__))
 func(*args, **kwargs)
 return wrapper #返回函数
@logger(level='WARNING')
def say(something):
 print("say {}!".format(something))
say("hello")

我们指定 WARNING 级别,运行一下,来看看输出。

[WARNING]: the function say() is running...
say hello!

使用偏函数与类实现装饰器
绝大多数装饰器都是基于函数和闭包实现的,但这并非制造装饰器的唯一方式。
事实上,Python 对某个对象是否能通过装饰器( @decorator )形式使用只有一个要求:decorator 必须是一个“可被调用(callable)的对象。
对于这个 callable 对象,我们最熟悉的就是函数了。
除函数之外,类也可以是 callable 对象,只要实现了 __call__ 函数(上面几个例子已经接触过了)。
还有容易被人忽略的偏函数其实也是 callable 对象。
接下来就来说说,如何使用 类和偏函数结合实现一个与众不同的装饰器。
如下所示,DelayFunc 是一个实现了 __call__ 的类,delay 返回一个偏函数,在这里 delay就可以做为一个装饰器。(以下代码摘自 Python工匠:使用装饰器的小技巧)

import time
import functools
class DelayFunc:
 def __init__(self, duration, func):
 self.duration = duration
 self.func = func
 def __call__(self, *args, **kwargs):
 print(f'Wait for {self.duration} seconds...')
 time.sleep(self.duration)
 return self.func(*args, **kwargs)
 def eager_call(self, *args, **kwargs):
 print('Call without delay')
 return self.func(*args, **kwargs)
def delay(duration):
 """
 装饰器:推迟某个函数的执行。
 同时提供 .eager_call 方法立即执行
 """
 # 此处为了避免定义额外函数,
 # 直接使用 functools.partial 帮助构造 DelayFunc 实例
 return functools.partial(DelayFunc, duration)

我们的业务函数很简单,就是相加

@delay(duration=2)
def add(a, b):
 return a+b

来看一下执行过程

>>> add # 可见 add 变成了 Delay 的实例
<__main__.DelayFunc object at 0x107bd0be0>
>>>
>>> add(3,5) # 直接调用实例,进入 __call__
Wait for 2 seconds...
8
>>>
>>> add.func # 实现实例方法
<function add at 0x107bef1e0>

如何写能装饰类的装饰器?
用 Python 写单例模式的时候,常用的有三种写法。其中一种,是用装饰器来实现的。
以下便是我自己写的装饰器版的单例写法。

instances = {}
def singleton(cls):
 def get_instance(*args, **kw):
 cls_name = cls.__name__
 print('===== 1 ====')
 if not cls_name in instances:
 print('===== 2 ====')
 instance = cls(*args, **kw)
 instances[cls_name] = instance
 return instances[cls_name]
 return get_instance
@singleton
class User:
 _instance = None
 def __init__(self, name):
 print('===== 3 ====')
 self.name = name

可以看到我们用singleton 这个装饰函数来装饰 User 这个类。装饰器用在类上,并不是很常见,但只要熟悉装饰器的实现过程,就不难以实现对类的装饰。在上面这个例子中,装饰器
就只是实现对类实例的生成的控制而已。
其实例化的过程,你可以参考我这里的调试过程,加以理解。Python黑魔法手册 2.0 文档第四章:魔法进阶扫盲【1】wraps 装饰器有啥用?
在 functools 标准库中有提供一个 wraps 装饰器,你应该也经常见过,那他有啥用呢?
先来看一个例子

def wrapper(func):
 def inner_function():
 pass
 return inner_function
@wrapper
def wrapped():
 pass
print(wrapped.__name__)
#inner_function

为什么会这样子?不是应该返回 func 吗?

这也不难理解,因为上边执行 func 和下边 decorator(func) 是等价的,所以上面func.__name__ 是等价于下面decorator(func).__name__ 的,那当然名字是 inner_function

def wrapper(func):
 def inner_function():
 pass
 return inner_function
def wrapped():
 pass
print(wrapper(wrapped).__name__)
#inner_function

那如何避免这种情况的产生?方法是使用 functools .wraps 装饰器,它的作用就是将 被修饰的函数(wrapped) 的一些属性值赋值给 修饰器函数(wrapper) ,最终让属性的显示更符合我们的直觉。

from functools import wraps
def wrapper(func):
 @wraps(func)
 def inner_function():
 pass
 return inner_function
@wrapper
def wrapped():
 pass
print(wrapped.__name__)
# wrapped

准确点说,wraps 其实是一个偏函数对象(partial),源码如下

def wraps(wrapped,
 assigned = WRAPPER_ASSIGNMENTS,
 updated = WRAPPER_UPDATES):
 return partial(update_wrapper, wrapped=wrapped,
 assigned=assigned, updated=updated)

可以看到wraps其实就是调用了一个函数 update_wrapper ,知道原理后,我们改写上面的代码,在不使用 wraps的情况下,也可以让 wrapped.__name__ 打印出 wrapped,代码如下:

from functools import update_wrapper
WRAPPER_ASSIGNMENTS = ('__module__', '__name__', '__qualname__', '__doc__',
 '__annotations__')
def wrapper(func):
 def inner_function():
 pass
 update_wrapper(inner_function, func, assigned=WRAPPER_ASSIGNMENTS)
 return inner_function
@wrapper
def wrapped():
 pass
print(wrapped.__name__)

 

© 版权声明

相关文章

暂无评论

暂无评论...